Aufarbeitung von Mischbettonenaustauscher-
harzen aus Drahterodiermaschinen für den
Wiedereinsatz sowie zur Rückgewinnung der
von den Harzen aufgenommenen Metalle

im Auftrag der
ABAG-Abfallberatungsagentur
Baden-Württemberg
Stauferstr. 15
D-70736 Fellbach

Projektträger
UT & S Umwelttechnik und
und Service GmbH & Co. KG
Carl-Benz-Straße 6
D-75217 Birkenfeld

Projektbegleiter
DKM-Unternehmensberatung
Reutestr. 23/2
D-72124 Pliezhausen

Oktober 1998
Erarbeitung:
DKM-Unternehmensberatung, Herrn Dr. Mertz, Reutestr. 23/2, 72124 Pliezhausen

Für die kooperative Mitwirkung an diesem Projekt bedankt sich die ABAG insbesondere bei Herrn Dengier und Herrn Nothacker, UT&S.

Die Durchführung dieses Modellprojekts sowie die wissenschaftliche Begleitung wurde mit Mitteln der Sonderabfallabgabe des Landes Baden-Württemberg unterstützt.

Herausgeber:
ABAG-Abfallberatungsagentur
Geschäftsbereich der
SAA-Sonderabfallagentur Baden-Württemberg GmbH
Stauferstr. 15
70736 Fellbach
Tel.: 0711 / 95 19 11-0
Fax: 0711 / 95 19 11-20
E-Mail: abag@saa.de

Projektleitung:
Dipl.-Ing. Hermann Kißler

Oktober 1998

Gedruckt auf: weiß mattgestrichen Offset chlorfrei gebleicht (Umschlag)

Alle Rechte der Verbreitung, auch durch Film, Funk und Fernsehen, fotomechanische Wiedergabe, Tonträger jeder Art, auszugsweisen Nachdruck oder Einspeicherung und Rückgewinnung in Datenverarbeitungsanlagen aller Art, sind vorbehalten.
Inhaltsverzeichnis

1. Zusammenfassung Seite 2
2. Einleitung Seite 4
3. Abfallrelevanz bei Erodierprozessen Seite 6
4. Einsatz von Mischbettonenaustauschharzen Seite 8
5. Beschreibung des Projektes Seite 10
 5.1 Ausgangslage Seite 10
 5.2 Werkstoffspezifische Erfassung und Transport von Mischbettharz Seite 11
 5.3 Kurzbeschreibung des Betriebes und der neuen Regenerations- und Abwasserabbehandlungsanlage Seite 14
 5.4 Aufbereitungsanlage für Mischbettharze Seite 14
 Blockschema zur Harztrennung und -aufbereitung Seite 17
 5.5 Analytik und Qualitätssicherung Seite 16
6. Einsatz von regenerierten Mischbettharzen in Pilotbetrieben Seite 20
 6.1 Einführung und Kapazitätsbewertung Seite 20
 6.2 Einsatzerfahrungen bei Pilotbetrieben (Anwendern) Seite 21
7. Verwertung der Regenerierschlämme Seite 24
8. Wirtschaftlichkeitsbetrachtung Seite 29
9. Beurteilung der Übertragbarkeit Seite 31
10. Literatur Seite 32

Anhang: Seite 33

Aufstellungsplan der Regenerier- und Abwasserabbehandlungsanlage Fa. UT&S
Tabelle: Einstufung von Abfällen nach LAGA und EAK
Prüfprotokolle der Harzkapazität als Fertigungskontrolle und zur Qualitätsdokumentation
Erhebungsbogen: Kundenerfahrungen / Befragung bei Pilotbetrieben
1. Zusammenfassung

Bei einem Bestand von ca. 9.000 bis 10.000 Drahterdiermaschinen in der BRD führt dies zu einer Sonderabfallmenge von ca. 3.200 m³/a. Mit ca. 6.000 installierten Maschinen liegt der Anwenderschwerpunkt in Baden-Württemberg.

Wie z.B. im Bereich der Galvanotechnik bereits eingeführt, werden inzwischen auch für Mischbettonaustauscher regenerierbare Harze angeboten. Bei der Aufarbeitung der Regenerierlösungen entstehen jedoch heterogene Metallhydroxidschlämme (Neutralisationschlamm) in erheblichen Mengen (ca. 75 Gewichts-% der regenerierten Harze), die als Sonderabfall deponiert werden müssen.

Ziel des Projekts war, bei der Fa. UT&S GmbH & Co. KG ein gesamtheitliches Regeneriersystem für Mischbettonaustauscherharze aus dem Einsatzbereich des Drahterdierens aufzubauen, bei dem auch die entstehenden Metallhydroxidschlämme einer metallurgischen Verwertung zugeführt werden können und damit das Sonderabfallaufkommen erheblich reduziert wird. Dazu wurde

- eine werkstoffgruppenspezifische Regenerieranlage mit drei Linien entsprechend den vorwiegend verarbeiteten Werkstoffen (Stähle, NE-Metalle, Hartmetalle) mit einer Gesamtkapazität von 55 000 l/Monat konzipiert und aufgebaut,
- eine Logistik für ein Kassetten-Tausaltsystem (Hol-Bring-System) für den Bereich Mischbettonaustauscher entwickelt und
- unter Einbeziehung von ca. 40 Pilotbetrieben ein breites Erfahrungsspektrum im betrieblichen Einsatz sowie der Möglichkeit der werkstoffgruppenspezifischen Erfassung gewonnen.

Für die Anwender, d.h. die Betreiber von Drahterodiermaschinen ergibt sich mit der Einführung der regenerierbaren Ionenaustauscherharze eine Verbesserung der betrieblichen Umweltsituation meist bei betriebswirtschaftlicher Gleichstellung gegenüber den Einwegsystemen. Ein Kostenvorteil errechnet sich insbesondere dann, wenn die sich aus der Umrüstung ergebenden, freiverdenden Maschinenlaufzeiten zusätzlich produktiv genutzt werden können.

Die für den Anwender relevanten Preise für Harze und Logistik werden mit steigender Entfernung zur Regenerieranlage unattraktiver. Die im Rahmen des Modellprojekts erprobte Technik läßt sich auch auf andere Standorte übertragen, so daß bei entsprechendem Bedarf eine flächendeckende Versorgung aufgebaut werden kann. Die Übertragbarkeit auf andere Einsatzgebiete von Mischbettionenaustauschern, z.B. in Metallreinigungsanlagen (wäbrige Oberflächenreinigung) konnte ebenfalls nachgewiesen werden.
2. Einleitung

Unter den Fertigungsverfahren nach DIN 8580 werden die Erodierprozesse den abtragenden, thermischen Verfahren zugeordnet bzw. als thermisches Abtragen mit Funken (Funkenerosion) oder Lichtbogen eingeordnet.

Zur Herstellung von Werkzeugen oder komplex geformten Bauteilen wird die Funkenerosions-technik in zunehmendem Maße eingesetzt, insbesondere dann, wenn diese Bauteile oder Werkzeuge aus schwerbearbeitbaren Werkzeugstählen oder gar aus Hartmetall bestehen, um hohe Bearbeitungsgeschwindigkeiten und genügend lange Standzeiten bei geringen Toleranzvorgaben einhalten zu können.

Diese Bearbeitungstechnik erfordert neben der maschinellen und elektrotechnischen Grundausstattung zur elektrischen Isolation der Schneidelektrode gegenüber dem zu bearbeitenden Werkstück ein Dielektrikum, das dunstoffig genug ist, um den Spalt zwischen Elektrode und Werkstück vollständig zu füllen, sowie die bei dem Bearbeitungsprozeß anfallenden Metallpartikel aufzunehmen und abzutransportieren und das gleichzeitig die Drahtelektrode und das Werkstück kühlen kann.

Einerseits kommen hierfür synthetisch hergestellte Kohlenwasserstoffprodukte in Frage, welche die technischen Anforderungen durchaus erfüllen, aber wegen der Sicherheitsaspekte (Brennbarkeit, Giftigkeit, Flüchtigkeit) erhebliche Gefahrenmomente aufweisen und deswegen hauptsächlich nur noch bei Senkerodiermaschinen Anwendung finden.

Bei Drahterodiermaschinen die größere Mengen an Dielektrikum benötigen (mehrere 100 Liter je Maschine) wird deswegen Wasser eingesetzt. Dieses muß zunächst von den ionogenen Wasserinhaltstoffen befreit werden, um die erforderliche Isolationseigenschaft, d.h. genügend geringe elektrische Leitfähigkeit zu erreichen (deionisiertes Wasser : DI-Wasser). Der Wirkungsgrad beim elektroerosiven Bearbeiten wird um so günstiger, je höher die angelegte elektrische Spannung zwischen Werkzeug (Formstempel oder Draht) und dem Werkstück ist. Dies bedeutet jedoch eine immer vollständigere Entsalzung des Prozesswassers.

Der für den jeweiligen Arbeitsablauf notwendige Entsalzungsgrad (gemessen als elektrische Leitfähigkeit (LF) in µS/cm bzw. MΩ*m) wird dadurch erreicht, daß das Dielektrikum standig oder leitfähigkeitsgesteuert über einen Mischbettonenaustauscher umgewalzt wird. Im Laufe des Prozesses wird dieses Mischbettonenaustauscherharz mit Anionen und (Metall)Kationen beladen, die aus folgenden Quellen stammen:
- dem zugeführten Rohwasser,
- dem verwendeten Werkstoff und
- dem eingesetzten Schneidedraht,

wobei die Metallionen elektrochemisch im Dielektrikum herausgelöst werden.

Zusätzlich wird auch durch Luftinhaltstoffe - im wesentlichen Kohlendioxid - eine ständige Verunreinigung und damit eine Leitfähigkeiterhöhung des DI-Wassers hervorgerufen.

Stand der Technik ist, Mischbettonenaustauscherharze als Einwegharze einzusetzen, die nachdem ihre Aufnahmekapazität erschöpft ist, verworfen bzw. als Sonderabfall entsorgt werden müssen (Bild 1).

Mit diesem Modellprojekt wird nicht nur das Ziel verfolgt, die Deponierung der mit Schwermetallen beladenen Ionen austauscherharze als Sonderabfall zu vermeiden, sondern auch die bei der Regeneration entstehenden Metallhydroxidschlümmiche einer stofflichen Verwertung zuzuführen und damit den Metallkreislauf zu schließen.
Die Verwerter (Metallhütten) verlangen jedoch für die Annahme solcher Metallhydroxidschlümpfe, daß diese möglichst sortenrein, zumindest jedoch nach Metallarten getrennt, angeliefert werden und bestimmte Mindestgehalte an den aufzuarbeitenden Metallen aufweisen. Um diese Anlieferkriterien zu erfüllen, ist es notwendig eine Selektion der verschiedenen als Werkstoffe eingesetzten Metalle zu gewährleisten und eine möglichst weitgehende Trennung der Stoffströme bereits an den Drahterodiermaschinen, also beim Bearbeiter, zu erreichen. Eine chemische Trennung nach einer gemeinsamen Aufarbeitung ist ausgesprochen schwierig und damit unwirtschaftlich.

Bild 1 ²) Bisheriger Entsorgungsweg für verbrauchte Einwegharze
3. Abfallrelevanz bei Erodierprozessen

Bild 2 2) Stoffkreisläufe beim Drahterodieren

Auf Grund des anstehenden elektrischen Feldes zwischen Erodierdraht und Werkstück werden die Metalle teilweise aufgelöst und bleiben ionogen in dem als Dielektrikum verwendeten Wasser gelöst. Ein Wasser mit solchen Metallionen kann für den weiteren Prozeß nicht nochmal verwendet werden, deswegen ist der Zwang zur Reinigung (Deionisierung) gegeben.

Abfallmengen von wesentlicher Bedeutung sind die Metallpartikel, die primär beim Erodiervorgang entstehen und die über Filter aus dem Kreislauf des Dielektrikums entfernt werden (Erodierschlamm). Ferner fallen die im Dielektrikum gelöste Metalle an, die über Ionenaustauscher – wie in diesem Bericht beschrieben – aus dem Dielektrikum entfernt werden müssen. Ebenfalls ist noch die Entsorgung von verbrauchtem Prozesswasser zu nennen, das wegen weiterer Verunreinigungen wie z.B. Öle etc. in unregelmäßigen Abständen verworfen werden muß.

Zur Standzeitverbesserung der Ionenaustauscherharze und zur Beschleunigung der Prozesswasseraufbereitung kann eine Umkehrosmoseanlage zur Vorentsalzung des Rohwassers eingesetzt werden. Im allgemeinen müssen die Drahterodieranlagen nach einem Wasserwechsel...
über Nacht – ohne mechanisch zu produzieren – im Kreislauf betrieben werden, um das Wasser zu entsalzen und auf Temperatur zu bringen. Durch das Zwischenschalten einer kleinen Umkehrosmoseanlage (UO)-Anlage kann zusätzlich die Standzeit der Ionenaustauscherharze nochmals um den Faktor 2 – 3, je nach gegebener Wasserhärte, verbessert werden.

Bild 3 2) Abfallrelevanz beim Draht- und Senkerodieren
4. Einsatz von Mischbettonenaustauscherharzen

Funktionsweise und Aufbau eines Mischbettonenaustauschersystems

Ionenaustauscher sind unlösliche Kunststoffe mit dissoziationsfähigen sauren oder basischen funktionellen Gruppen wie Sulfon-, Carbonsäuren bzw. Ammoniumverbindungen, an denen entweder Kationen oder Anionen ausgetauscht werden können. Die Ionenaustauschertechnik basiert auf chemischen Verbindungen (Makromolekülen, Harzen), die nach folgendem Prinzip (schematisch) reagieren:

A) Beladungsvorgang an der Drahtrodiermaschine = Aufnahme von Metallionen

Kationenaustauscher (KA) \((\text{Me} = \text{Metallion}) \)

\[
\text{····(Harz)--SO}_3\text{-H} + \text{Me}^+ \Rightarrow \text{····(Harz)--SO}_3\text{-Me} + \text{H}^+
\]

Anionenaustauscher (AA) \((\text{An} = \text{Anion}) \)

\[
\text{····(Harz)-NR- OH} + \text{An}^- \Rightarrow \text{····(Harz)-NR- An}^- + \text{OH}^-
\]

Dieser chemische Vorgang ist reversibel und ermöglicht damit die Regeneration.

B) Regeneriervorgang in der Regenerierstation

Durch Behandlung der Kationenaustauscher (KA) mit Säuren und der Anionenaustauscher (AA) mit Laugen wird der Ausgangszustand hergestellt und die Metalle zunächst in ionogener Form freigesetzt.

Kationenaustauscher (KA) \((\text{Me} = \text{Metallion}) \)

\[
\text{·····(Harz)--SO}_3\text{-Me} + \text{H}^+ \Rightarrow \text{·····(Harz)--SO}_3\text{-H} + \text{Me}^-\!
\]

Anionenaustauscher (AA) \((\text{An} = \text{Anion}) \)

\[
\text{····(Harz)-NR-An}^- + \text{OH}^+ \Rightarrow \text{····(Harz)-NR-OH} + \text{An}^-\!
\]

Die Ionenaustauscherharze liegen in Form von kleinen Kugeln mit einem Durchmesser von 0,2 mm bis ca. 1 mm vor. KA-Harze und AA-Harze unterscheiden sich durch das spezifische Gewicht und können deswegen durch einen Flotationsprozess mit Wasser getrennt werden, was zur Regeneration unbedingt notwendig ist.

Da im Wasser stets Kationen und Anionen in äquivalenten Mengen vorliegen, müssen bei der Entionisierung stets beide Komponenten KA und AA eingesetzt werden (Bild 4").

Werden die KA mit den AA innig gemischt, spricht man von einem Mischbett (MB) (Bild 5").

Nach Gebrauch, d.h. zur Regenerierung müssen MB-Harze wieder in AA und KA getrennt werden (Bild 6"). Dieser Vorgang muß für jede verschieden beladene MB-Harzsorte separat durchgeführt werden um die Regeneriermedien (Säuren und Laugen) gemäß dem Projektziel werkstoffspezifisch aufarbeiten zu können (Fe = Eisenmetalle; NE = Nichteisenmetalle; HM = Hartmetalle).
Bild 4: Schemazeichnung
Einzelkolonnen-Ionen austauscher mit getrennten Behältern für KA- und AA-Harze

Bild 5: Schemazeichnung
Mischbett-Ionen austauscher

Bild 6: Funktionsschema: Regenerieren von Mischbettonenaustauscherharzen
5. Beschreibung des Projektes

5.1 Ausgangslage

Zur Abschätzung der Entsorgungsmenge an verbrauchten Ionenaustauscherharzen kann von folgendem Ansatz ausgegangen werden. Als typische Standzeit von Ionenaustauscherharzen bei einer fertigungsüblichen Auslastung einer Drahterodiermaschine können ca. 4 Wochen zugrunde gelegt werden. Das führt bei einer durchschnittlichen Ionenaustauscherharzmenge von 30 l pro Maschine und bei ca. 9.000 Maschinen (Stand 1995) in Deutschland zu einer Sonderabfallmenge von ca. 3.240 m³/a. Werden nicht Einwegharze, sondern, wie im Projekt vorgesehen, regenerierbare Mehrwegmischbettharze eingesetzt, so würde sich bei der Regeneration der Harze und anschließender Fällung der Metalle als Hydroxide eine durchschnittliche Entsorgungsmenge von ca. 1.940 jato Metallhydroxidschlamm ergeben (bei 30 % Trockensubstanz).

Ziel des Projektes ist die Kreislauführung der MB-Harze und die Verwertung der Metalle als Rohstoff.

Für eine wirtschaftliche Aufbereitung der MB-Harze ist ein flächendeckendes und effektives Transport- und Logistiksystem notwendige Voraussetzung. Es müssen deshalb genügend Erodierbetriebe in das System eingebunden werden, um die für die wirtschaftliche Harzregeneration und die Metallrückgewinnung ausreichende, kontinuierlich anfallende MB-Harzmenge zu sichern.

Um den Verwertern nach Metallarten getrennte Schlämmen anbieten zu können, müssen die Betreiber von Drahterodiermaschinen in die Lage versetzt werden, das benötigte DI-Wasser getrennt nach Metallarten zu entionisieren, d.h. gegebenenfalls über verschiedene, werkstoffspezifische Ionenaustauscherpatronen zu führen. Dies setzt voraus, daß entweder an den einzelnen Drahterodiermaschinen jeweils immer die gleichen Materialien bearbeitet werden oder, wenn auf einer Maschine verschiedene Materialien bearbeitet werden sollen (was in vielen Betrieben der Fall ist), bei jedem Materialwechsel eine Umschaltung auf eine werkstoffspezifische Ionenaustauscherpatrone oder ein Patronenwechsel erfolgt (Bild 7). Wünschenswert wäre dafür eine automatische Umschaltung durch Materialidentifikation über die Bearbeitungsparameter beim Erodieren. Eine automatische Umschaltung dürfte nach den ersten Erfahrungen mit Pilotbetrieben jedoch nur für zukünftige Modelle der Erodiermaschinen in Frage kommen, da die Nachrüstung bestehender Anlagen wegen der fehlenden elektronischen Materialidentifikation zu aufwendig ist.
Deionisieren bei unterschiedlichen Werkstoffgruppen
Fe = Eisenmetalle; NE = Nichteisenmetalle; HM = Hartmetalle

Tatsächlich ist jedoch eine strikte Trennung entsprechend den erzeugten Metallionen bei der Aufbereitung des Dielektrikums (DI-Wassers) in der Maschine auch bei einem automatisierten Umschaltprozess ohne eine prinzipielle Änderung der Erodiermaschinen nicht möglich, da über den Vorratstank für verschmutztes Wasser immer eine Rückvermischung und damit eine Verschleppung der Metallionen gegeben ist und zudem durch den Metallabtrag am Schneidedraht immer auch Buntmetall (Kupfer und Zink) gelöst und in das Dielektrikum eingetragen werden (vergl. Bild 8).

In der betrieblichen Praxis wird jedoch die Wechselhäufigkeit von z.B. Stahl als bearbeitetem Werkstoff nach Hartmetall oder umgekehrt durch Fertigungsabläufe begrenzt, denn außer den Harzpatronen müssen dann auch immer die Maschinenparameter neu eingegeben werden, so daß auch aus diesem Grund nicht unnötig häufig gewechselt wird. Die praktischen Erfahrungen haben gezeigt, daß trotz der Verschleppungen die Annahmekriterien der Wiederaufarbeiter erreicht werden können.

5.2 Werkstoffspezifische Erfassung und Transport von Mischbettharz

Dem Betreiber von Drahterodiermaschinen müssen Mischbettonenaustauscherpatronen zur Verfügung gestellt werden, die materialspezifisch, also möglichst nur mit Ionen einer Werkstoffgruppe beladen werden (siehe oben)
Bild 8 Schematische Wasserführung bei einer modernen Drahterdiermaschine (Abb. UT&S)
Damit eine materialspezifische Beladung der Ionenaustauscherpatronen bis zur Regeneration erkennbar bleibt, werden diese Patronen optisch für den Betreiber gekennzeichnet.

Folgende Daten werden auf jeder Harzpatrone mitgeführt:
(vergl. Bild 9)

Farbe des Etiketts:
- grün = Austauscherbehälter gehört dem Kunden
- rot = Leihpatrone, Eigentum von UT&S
- Name des Kunden
- Standort
- Identifizierungsnummer (8-stellig)
- Harztyp
- Datum der Erstauslieferung

Bei Pilotbetrieben wurden die Patronen ergänzend mit einer Standzeittablette ausgeliefert.

Der Kunde trägt dann jeweils das

- Ein- und Ausbaudatum,
- die Betriebsstunden,
- das bearbeitete Material und
- den Beladungszustand über die elektrische Leitfähigkeit des Prozesswassers beim Patronentausch ein.

Mit diesen Daten lassen sich evtl. auftretende Kapazitätsänderungen und damit eine einhergehende Verblockung der Harze - auch über einen längeren Zeitraum hinweg - beobachten und erfassen (vergl. Abb. 16 und 17). Nach Abschluß der Erprobungsphase wurden die Stammdaten in einen Barcode übertragen, der an jeder Harzpatrone maschinell (automatisch) lesbar angebracht ist. Damit wurde eine vollständige, kundenbezogene, technische und kaufmännische Datenerfassung ermöglicht, die deutlich kostengünstiger ist, als das bisherige Verfahren und zugleich eine höhere Sicherheit bei der Aufbereitung und Regenerierung der Harze sicherstellt.

Bild 9 IA-Harzpatrone 30 l anschlußfähig
5.3 Kurzbeschreibung des Betriebes und der neuen Regenerations- und Abwasserbehandlungsanlage

Schon bei diesem System wurden die mit unterschiedlichen Schwermetallen beladenen Ionenaustauscherkassetten selektiv regeneriert und das anfallende Regenerat in getrennten Abwasserlinien mit dem Ziel aufbereitet, verwertbare Metallhydroxidschlämme zu produzieren (detaillierter Aufstellungsplan in der Anlage).

Durch die Erfahrungen mit dieser Anlage sind sehr gute fachliche und organisatorische Voraussetzungen gegeben, das erforderliche getrennte Handling der Harze und die kundenspezifische Regenerierung und Logistik von Anfang an sicher umzusetzen.

5.4 Aufbereitungsanlage für Mischbettharze

Im Harzaufbereitungsbereich ist eine strikte Trennung zwischen Mischbett- und REMA-Anlagentechnik realisiert. Die verschieden beladenen Harzsorten fallen in unterschiedlichen Mengen in Relation zu den bearbeiteten Werkstoffgruppen an.

Der Anteil an Fe-haltigen Harzen beträgt zwischen 80% - 85%, der mit Hartmetall beladene Harzanteil liegt bei ca. 10% - 15%, der Harzanteil aus der Bunmetalbearbeitung bei ca. 5%. Zur Erzielung verwertbarer Metallhydroxidschlämme ist ein nach Metallarten getrennter Anlagenbau realisiert worden.

Die Regenerierstationen sind für die 3 Abwasser- und Metallschlammlinien "Hartmetall", "Eisenwerkstoffe - Stahl" und "NE - Metalle" ausgelegt (Bild 11, 12, 13, 14, 15), jeweils getrennt für Laugen- und Saureregeneration. Es sind 6 Mischbettregeneriersäulen installiert, als Anordnung mit jeweils 3 Anionen- und 3 Kationenregeneriersäulen. Die Regeneratspeicher sind nach Inhaltsstoffen getrennt bezeichnet.

Die Trenneinheiten bestehen aus gummiertem Stahl mit Sichtfenstern sowie jeweils 3 Absauganlagen zum Entnehmen der getrennten MB-Chargen.

Dasselbe Prinzip gilt für die EDV-geführten Bedienstationen. Es wurden insgesamt 5 Bildschirmbedienstationen den jeweiligen Prozessgruppen zugeordnet. Die Behandlungszyklen können über eine menugeführte Programmabfolge automatisch gesteuert werden.
Durch die neue Anlagenkonzeption konnten folgende Vorteile realisiert werden:

- Zur Wasserersparnis wird das Trennwasser aufgefangen, in einem Auffangbehälter zwischengelagert und zum Trennen von weiteren Chargen wiederverwendet.
- Durch die genau gesteuerte Regenerationstechnik ist jetzt nur noch ein ca. 3-facher Überschuß an Regeneriermittel (Säure, Lauge) notwendig, während in der "alten" Anlage noch ein bis zu 6,25-facher Überschuß zur Regeneration erforderlich war.
- Als weitere Stufe zur Reduzierung des Chemikalienverbrauchs, und damit zur Verringerung der Abwassermenge und der Kostenersparnis, wird seit Nov. 1997 die Regeneriersäure der Schlufregeneration aufgefangen und nochmals zur Vorregeneration von neu angeliefertem, hochbeladenem Harz eingesetzt.

In der Regenerierstation für den Bereich der Mischbettregeneration sind 3 separate MB-Stapelbehälter mit je 1.000 l Inhalt (Bild 12) und zugehörig je eine Trennkolonne in Betrieb. Diese Trennkolonnen für hartmetall- und für eisenhaltige Ionenaustauscherharze haben je eine Kapazität von 300 l, die Trennkolonne für nichteisenmetallige Harze eine Kapazität von 150 l Harz (Bild 13).

Nach dem Trennen werden die Kationen- und Anionenaustauscherchargen in separate Regenerierbehälter eingefüllt und an die Regenerierstation angedockt (Bild 14).

Typischer Ablauf der Regeneration von beladenem Mischbett-Harz:

- Eingangskontrolle
- Zwischenlagerung in Stapelbehältern
- Befüllen des Trennreaktors mit beladenem Mischbettharz
- Trennen von Kationen- und Anionenharz über die Unterschiede im spezifischen Gewicht der beiden Harztypen durch aufstromendes Wasser, das zur Wasserersparnis in einem Auffangbehälter zwischengelagert und wiederverwendet wird
- Separates Entnehmen der getrennten Harzfraktionen Kationen- und Anionenharz über Sauglanzen mit definierten Eintauchlängen
- Einfüllen der getrennten Harzchargen in die Kationen- bzw. Anionenregenerierbehälter
- Paralleles Regenerieren der KA- und AN-Harze getrennt in Chargen je 140 - 160 l
- Durch die genau gesteuerte Regenerationstechnik ist nur noch ein ca. 3-facher Überschuß an Regeneriermittel notwendig, während in der "alten" Anlage teilweise noch ein bis zu 6,25-facher Überschuß zur Regeneration erforderlich war.
- Prüfung der erzielten Austauscherkapazität, ggf. Nachregeneration der betroffenen Charge bei unbefriedigendem Ergebnis
- Mischen von Anionen- und Kationenharzen in equivalenten Mengen
- Abfüllen in Patronen bzw. firmeneigenen Behältnissen
- Entnahme eines Rückstellmusters zur Qualitätsdokumentation
- Kommissionierung und Versand

Regeneratbehandlung:

Die Regenerate (Säuren) der einzelnen Linien aus der KA-Regenerierung werden werkstoff-
spezifisch behandelt.
- Überführung (Umpumpen) vom Regeneratbehälter in den jeweiligen Vorlagebehälter
- Neutralisation / Fällung
- Filtration (Schlammentwässerung) der kompletten Fällungsschale in selektiven Kammerfilterpressen
- Zwischenlagerung der Filterschlämme im Schlammspeicher zur getrennten Verwertung
- Prüfung des behandelten Abwassers auf Einhaltung der Grenzwerte und Abgabe in die Kanalisation

5.5 Analytik und Qualitätssicherung

Erläuterungen zum Kapazitätstest:
Im Kapazitätstest wird die NVK (Nutzbare-Volumen-Kapazität) ermittelt. Dabei wird eine Untersuchung der Einzelkapazitäten der KA und AA vorgenommen. Die NVK ist die in der Praxis zur Verfügung stehende Aufnahmekapazität des Harzes für Ionen und unterscheidet sich zur theoretischen Kapazität. Die Soll-Kapazität von 100% ist eine angestrebte Größe, die geringfügig unter- oder überschritten werden kann. Bei Unterschreitung von mehr als 10% erfolgt eine Wiederholung der Regeneration.
Nach der Regeneration wird von jeder ausgelieferten Charge eine Rückstellprobe einbehalten.

Der Laborbereich wurde mit einem Photometer ausgestattet, so daß die wichtigsten (Metall) Kationen- und Anionenwerte nunmehr vom eigenen Personal kurzfristig für die Eingangsprüfung, Qualitätssicherung und Grenzwertprüfung (im Abwasser) bestimmt werden können.

Auswertung Chargenprotokolle

![Kapazität in %](image)

<table>
<thead>
<tr>
<th>Chargen Nr.</th>
<th>Kapazität soll</th>
<th>Kapazität ist</th>
<th>Abweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>397/31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>397/45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>497/21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>497/41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>497/49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>597/19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>597/11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bild 10 Auswertung von Chargenprotokollen
Bild 11 Blockschema zur Harztrennung und -aufbereitung
Bild 12 Stapelbehälter für beladenes Ionen austauscherharz (3 Linien)

Bild 13 Trennkolonnen für beladenes Ionen austauscherharz (3 Linien)
Bild 14 Regenerierstationen für Kationen- und Anionenharz

Bild 15 Kammerfilterpressen für Hartmetall-, Fe- und NE- haltige Schlamm
6. Einsatz von regenerierten Mischbettharzen in Pilotbetrieben

Kundenstruktur und Produktspektrum

Die bisher gewonnenen Neukunden wie auch die Pilotbetriebe entsprechen mit ihrer Struktur und Betriebsgröße der typischen Verteilung in Baden-Württemberg mit vielen klein- und mittelständischen Betrieben:

- bis 20 Mitarbeiter: 35
- 20 bis 500 Mitarbeiter: 85
- über 500 Mitarbeiter: 10

Neukunden und Pilotbetriebe gesamt: 130

Das gefertigte Produktspektrum umfaßt Hartmetall- und Stahlwerkzeuge sehr häufig zur Stanzbearbeitung, Kleinserien für Bauteile aus Stahl und Messing sowie Prototyp- und Vorserienteilene, die überwiegend in der Maschinenbau- und Elektroindustrie eingesetzt werden.

6.1 Einführung und Kapazitätsbewertung

Wie sehr diese Harzstandzeit an ein und derselben Maschine variieren kann, zeigen die nachstehenden Diagramme (Bild 16 und 17). Nach jedem Wechsel der Patronen wurde die erreichte Betriebsstundenzahl aufgezeichnet. Es zeigt sich, daß im günstigsten Fall eine Standzeit der Harzpatrone von nahezu 600 Betriebsstunden erreicht werden kann (alleinige Bearbeitung von Edelstahl bei überwiegender Feinschlittechnik) gegenüber nur annähernd 100 Betriebsstunden bei fast ausschließlich Bearbeitung von Hartmetall, überwiegend mit hoher Schnittgeschwindigkeit. Auch das Diagramm (Bild 17) mit Harzstandzeit 2 zeigt eine charakteristische Standzeitkurve für das regenerierbare Mischbettharz, wobei diese Kurve von einer anderen Maschine stammt.

Eine generelle Aussage über die Standzeit der Ionenaustauscherpatronen bezüglich der Betriebsstunden läßt sich mit einer gewissen Genauigkeit nur für einen speziellen Maschinentyp bei einheitlichen Schnittbedingungen und gleichem Werkstoff angeben. Bei der üblicherweise häufig wechselnden Beaufschlagung der Maschinen läßt sich beim regenerierbaren Harz genausowenig eine exakte Standzeit vorgeben wie für Einwegharze.

6.2 Einsatz erfahrungen bei Pilotbetrieben (Anwendern)

Nicht alle Anwender oder Neukunden beziehen das MB-Harz bisher in den angebotenen Standardpatronen mit 18 l bzw. 30 l Inhalt. Etwa 10 % der aktuell belieferten Firmen beziehen das Harz als Fassware und stellen das beladene Harz ebenfalls in Kunststoffmassen zur Abholung bereit. Bei diesen Firmen wird in aller Regel die Arbeitszeit zum Füllen und Entleeren der Ionenaustauschergefäße nicht in die Kostenkalkulation mit aufgenommen, da die Arbeitszeit nicht für andere Arbeiten genutzt werden kann.

Angebliche Korrosionsprobleme

Bild 16: Harzstandzeit (Maschinenl) als Funktion der Laufzeit in Betriebstunden
Bearbeitung von HM, überwiegend Feinschnitt
Anwendung von Korrosioninhibitoren

Korrosioninhibitoren werden bei der Drahterodierentechnik zeitweilig vor der Bearbeitung auf das Bauteil gegeben oder auch dem Dielektrikum beigemischt. Dabei handelt es sich in der Regel um Kohlenwasserstoffprodukte, die über das DI-Wasser dann auf das MB-Harz gelangen, auf dem Harz einen Film bilden und so den Austausch der Ionen sowohl bei der Aufnahme während des Erodierens wie besonders auch bei der nachfolgenden Regeneration behindern. Dieser Film läßt sich zwar beim Regenerieren ablösen, jedoch kann beim Kunden der subjektive Eindruck entstehen, daß die Kapazität des Harzes verringert sei.

Eine insgesamt günstigere Lösung des Korrosionsproblems bei den Werkstücken konnte bei verschiedenen Pilotbetrieben in Versuchen dadurch erreicht werden, daß beim Drahterodierprozeß selbst keine Korrosionsschutzmittel verwendet werden, sondern das Werkstück unmittelbar nach der Bearbeitung trockengebläst und nur bei sehr korrosionsanfälligen Werkstoffen ein Korrosionsschutzmittel aufgesprüht wird.

7. Verwertung der Regenerierschlämmen

Die anfallenden Metallhydroxidschlämme aus der Aufarbeitung der Regenerate (Sauren) sind nach LAGA (Länderarbeitsgemeinschaft Abfall) und EAK (Europäischer Abfallartenkatalog) als besonders überwachungsbedürftig eingestuft (vergl. Tabelle in der Anlage). Sie sollen entsprechend der Zielsetzung des Projekts einer stofflichen Verwertung über sekundärmetallurgische Prozesse zugeführt werden.

Die Schlammanalyse haben ergeben, daß alle Schlämme einen erheblichen Zinkanteil aufweisen. Dies läßt sich darauf zurückführen, daß beim Einsatz verzinkter Schneidröhre ein erheblicher Zinkabtrag erfolgt.

Die Analyse eines solchen Schlammes mit einem Wassergehalt von 84,4 % zeigt folgende Zusammensetzung (Metalle bezogen auf Trockenmasse; die Differenz zu 100 % ergibt sich aus dem Anionenanteil, überwiegend Hydroxide):

Cu 15 %, Pb 1 %, Zn 20 %, Fe 3 %, Ni 1 %, Cl 5 %, S 2 %, CaO 5 %, SiO₂ 1 %

Die buntmetallhaltigen Schlämme werden von den Hüttenwerke Kayser AG zu einem Preis von ca. 300 DM/t gemäß nachstehendem Verarbeitungsgang wiederaufgearbeitet (Bild 21).
Bild 18 a,b Belagbildung auf Maschinenteil nach langer Lagerzeit im Dielektrikum ohne Reinigung. Aufnahmen im Rasterelektronenmikroskop

a) 70-fache und b) 140-fache Vergrößerung
Bild 19 Elementanalyse des Maschinenbauteils (Bild 18)

Das Grundmaterial besteht aus Neusilber:
Hauptbestandteile Kupfer (Cu), Nickel (Ni) und Zink (Zn)
Elementanalyse des Belags auf dem Bauteil (Bild 18)

Der Belag besteht aus Zink (Zn) und Kupfer (Cu), den Hauptbestandteilen des Schneidedrahtes, sowie Nickel (Ni) und Kobald (Co) aus dem bearbeiteten Material.
Verarbeitungsgang zur Wiederaufarbeitung eines Buntmetallschlammes

Bild 21
8. Wirtschaftlichkeitsbetrachtung

Auch ein neues umweltfreundliches Verfahren kann auf Dauer nur dann am Markt bestehen und ein etabliertes Verfahren substituieren, wenn es in Summe für den Anwender kostenmäßige Vorteile bietet.

Als wirtschaftliche Rahmenbedingung für den Ersatz "neu" gegen "alt" ist hierfür der Preis für das zur Zeit verwendete Einwegharz anzusetzen. Dieser setzt sich aus dem Preis für das neue Harz mit ca. 5 bis 7 DM je Liter und dem Preis für die Entsorgung (Transport und Deponie) von ca. 2 DM je Liter zusammen.

Der dritte Kostenfaktor für den Anwender sind die Investitionen für die benötigten Mischbetalharzpatronen die gegenüber der Harzbelieferung in anderen Gebinden zwar Investitionskosten verursachen aber auch eine wesentliche Arbeitszeitersparnis und Rationalisierung ermöglichen.

Da jede Patrone ca. 700 DM kostet und pro Maschine 2 - 3 Harzpatronen wegen des Materialwechsels verfügbar sein sollten, ist für einen durchschnittlichen Drahterdierbetrieb eine Investitionssumme von 4 - 20 TDM erforderlich. Wenn die zu erwartende Gebrauchsdauer dieser Patronen mit 7 - 10 Jahren angenommen wird, errechnen sich bei einer typischen Nutzung kalkulatorische Kosten zwischen 0,1 DM bis 0,3 DM je Liter regeneriertes Harz.

Diesem - nicht unerheblichen - Investitionsaufwand stehen als Vorteil für den Anwender noch die durchgängig angewendeten Harzpatronen gegenüber dem zeitlich aufwendigeren Einwegharzwechsel bei Einwegharzsystemen gegenüber. Bei vielen Maschinen ist ein Harzwechsel bei werkseitig eingebauten (kleinen) MB- Stahlpatronen mit ca. 10 l Harzinhalt ungefähr nach 6-10 Arbeitstagen erforderlich. Mit den größeren 30 Liter UT&S - Patronen können die Wechselintervalle deutlich verlängert werden, wodurch sich die Wirtschaftlichkeit noch mehr verbessert.

Die Vorteile rechnen sich nicht nur über die verkürzte Arbeits- und eine verlängerte Maschinenlaufzeit, wesentlich ist auch der insgesamt bedienungsfreundlichere Arbeitsvorgang. Die nunmehr erforderliche Arbeitszeit zum Wechseln wird mit max. 10 min angegeben, da nur noch zwei Gewindeanschlüsse verschraubt werden müssen (Bild 9) und die Patrone vom Transportservice direkt an die Maschine geliefert bzw. dort abgeholt wird.
Ferner entfällt die Zwischenlagerung des beladenen Harzes und die Vorratshaltung des unbeendeten Harzes, da die Patronen vom Austauschdienst der Fa. UT&S Umweltservice GmbH & Co. KG entsprechend den Terminwünschen der Kunden gebracht und zurückgenommen werden.

Die Regenerierkosten liegen zwischen ca. 4,80 DM und 6,80 DM je Liter regeneriertes Harz. Die Transport- und Wiederaufarbeitungskosten für den erzeugten Hydroxidschlamm liegen unter 0,1 DM/l Harz. Damit sind regenerierbare MB-Harze gegenüber Einwegharzen konkurrenzfähig. Die Grenzen für die Markt durchdringung werden primär nur über die Transportkosten bzw. über den dafür noch durchsetzbaren Mischkalkulationssatz bestimmt.

Beispielrechnung für 4 Drahterdiermaschinen

<table>
<thead>
<tr>
<th></th>
<th>Regenerierbares MB-Harz</th>
<th>Einweg MB-Harz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbrauchsmaterialkosten (Harz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Harzwechsel</td>
<td>18 Liter</td>
<td>16 Liter</td>
</tr>
<tr>
<td>je Monat und Maschine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bei 4 Maschinen je Jahr</td>
<td>864 Liter</td>
<td>768 Liter</td>
</tr>
<tr>
<td>Harzkosten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Transport</td>
<td>5,40 DM/l</td>
<td>6,00 DM/l</td>
</tr>
<tr>
<td>+ Entsorgung</td>
<td>3,00 DM/l</td>
<td>2,00 DM/l</td>
</tr>
<tr>
<td>reine Harzkosten je Jahr</td>
<td>7257,60 DM / a</td>
<td>6144,00 DM / a</td>
</tr>
<tr>
<td>Investmittel für</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Harzpatronen 8.400 DM</td>
<td>8.400 DM</td>
<td></td>
</tr>
<tr>
<td>AfA linear 5 Jahre</td>
<td>1680 DM / a</td>
<td></td>
</tr>
<tr>
<td>Kalkul. Zins 6%</td>
<td>504 DM / a</td>
<td></td>
</tr>
<tr>
<td>Harz + Harzpatronen je Jahr</td>
<td>9.441,60 DM / a</td>
<td>6.144,00 DM / a</td>
</tr>
<tr>
<td>mögliche Ersparnis an Arbeitszeit zum Wechseln je Maschine und Monat</td>
<td>20 min.</td>
<td></td>
</tr>
<tr>
<td>Jährlich</td>
<td>16 Std./a</td>
<td>960 DM / a</td>
</tr>
<tr>
<td>bei 60 DM / h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zusätzlich verfügbare Maschinenstunden</td>
<td>16 Std./a</td>
<td></td>
</tr>
<tr>
<td>Jährlich</td>
<td>2400 DM / a</td>
<td></td>
</tr>
<tr>
<td>bei 150 DM / h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harzkosten / Arbeitszeitkosten</td>
<td>6.082 DM / a</td>
<td>6.144 DM / a</td>
</tr>
</tbody>
</table>
9. Beurteilung der Übertragbarkeit

Die über das Modellprojekt geförderte Verfahrenstechnik läßt sich prinzipiell überall dort übertragen und einsetzen, wo Mischbettonenaustauscherharze nach deren Erschöpfung verworfen werden (z.B. Erodierbetriebe, Metallreinigungsanlagen, Mischbettregenerieranlagen).

Im weiteren sind natürlich zukünftige Anwendungsbereiche für die regenerierbare Mischbettharz und damit die stoffliche Verwertung von Harzen und Metallen gegeben, die MB-Harze einsetzen.
Ein weiterer Anwendungsbereich für das regenerierbare Mischbettharz besteht bei der wässrigen Metallreinigung. So werden zur Zeit bereits mehrere 1.000 l Einwegharz je Monat, durch bei Fa. UT&S regeneriertes MB-Harz ersetzt.
10. Literatur

1) Elektroerosive Metallbearbeitung, Materialabtrag durch Funkenerosion
von Dipl.-Ing. Manfred Feurer.
Vogel-Buchverlag Würzburg ;

2) Tagungsband „Abfallarmes Erodieren“ am 3. Dezember 1996 in Birkenfeld;
Wege zur umweltgerechten Anwendung von Erodieranlagen
ABAG Abfallberatungsagentur, Stauferstr. 15, 70736 Fellbach

3) ION Exchangers
von Konrad Dorfner,
Verlag Walter de Gruyter Berlin New York 1991 ;

4) Organikum
organisch-chemisches Grundpraktikum
VEB Deutscher Verlag der Wissenschaften
Berlin 1970
9. Auflage . Seite 713
ANHANG:

Aufstellungsplan der Regenieranlagen und Abwassertechnik bei Fa. UT&S Umwelttechnik und Service GmbH & Co. KG

Zahlen der verkauften Schneiderodieranlagen in Deutschland 1993, 1994, 1995

Tabelle: Einstufung von Abfällen nach LAGA und EAK

Prüfprotokolle der Qualitätsprüfung und Fertigungsfreigabe (3 Beispiele)

Erhebungsbogen: Kundenerfahrungen / Befragung bei Pilotbetrieben
Bei unverändertem Bereich
ist das Tragwerk ausgeführt.

Schnitt "A-A"

Schnitt "B-B"
<table>
<thead>
<tr>
<th>Hersteller</th>
<th>1993</th>
<th>1994</th>
<th>1995</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEG-ELOHERM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGEMA CH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGEMA Erotech</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGIE</td>
<td>131</td>
<td>183</td>
<td>181</td>
</tr>
<tr>
<td>CHARMILLES</td>
<td>90</td>
<td>122</td>
<td>145</td>
</tr>
<tr>
<td>DECKEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGESPARK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HITECHI</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>INGERSOLL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAPAX</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FUNAK - MATRA</td>
<td>64</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>MAKINO</td>
<td>28</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>MECRODE</td>
<td>52</td>
<td>57</td>
<td>35</td>
</tr>
<tr>
<td>MITSUBISHI</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>MULTIFORM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONA</td>
<td>0</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>RFE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEIBU + BROTHER</td>
<td>29</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>SODIK</td>
<td>37</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>WALTER</td>
<td>25</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>Sonstige</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| SUMME | 472 | 477 | 501 |

<table>
<thead>
<tr>
<th>Marktanteile</th>
<th>1993</th>
<th>1994</th>
<th>1995</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGIE</td>
<td>131</td>
<td>185</td>
<td>181</td>
</tr>
<tr>
<td>CHARMILLES</td>
<td>90</td>
<td>122</td>
<td>145</td>
</tr>
</tbody>
</table>

<p>| Zusammen | 47% | 64% | 65% |</p>
<table>
<thead>
<tr>
<th>Abfallbezeichnung nach LAGA</th>
<th>ASN nach LAGA</th>
<th>bes. überwa. bedürftig</th>
<th>ASN nach EAK</th>
<th>Abfallbezeichnung nach EAK</th>
<th>bes. überwa. bedürftig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bohr-, Schneid- und Schleiföle</td>
<td>54109</td>
<td>ja</td>
<td>12 01 07</td>
<td>verbrauchte. Bearbeitungöle, halogenfrei</td>
<td>ja</td>
</tr>
<tr>
<td>Synthetische Kühl- und Schmiermittel</td>
<td>54401</td>
<td>ja</td>
<td>12 01 10</td>
<td>verbr. Bearbeitungöle, halogenhaltig</td>
<td>ja</td>
</tr>
<tr>
<td>Erodierschlamm</td>
<td>54707</td>
<td>ja</td>
<td>12 01 11</td>
<td>synthetische Bearbeitungöle</td>
<td>ja</td>
</tr>
<tr>
<td>Hon- und Läppschlämme</td>
<td>54708</td>
<td>ja</td>
<td>12 02 02</td>
<td>Bearbeitungsschlämme</td>
<td>ja</td>
</tr>
<tr>
<td>Schleifschlamm, ölhaltig</td>
<td>54710</td>
<td>ja</td>
<td>19 09 05</td>
<td>Schleif-, Hon- und Läppschlämme</td>
<td>nein aber: überwachungsbed. zur Verwertung</td>
</tr>
<tr>
<td>Ionenrauchharze (aus Wasseraufbereitung)</td>
<td>57124</td>
<td>nein</td>
<td>19 08 06</td>
<td>gesättigte oder verbrauchte Ionenrauchharze (aus Wasseraufbereitung)</td>
<td>nein</td>
</tr>
<tr>
<td>Ionenrauchharze m. schädlichen Verunreinigungen</td>
<td>57105</td>
<td>ja</td>
<td>15 02 99 D1</td>
<td>gesättigte oder verbrauchte Ionenrauchharze (aus Abwasserbehandlung)</td>
<td>ja</td>
</tr>
<tr>
<td>Papierfilter, ölgetränkt</td>
<td>18709</td>
<td>nein</td>
<td>15 02 99 D1</td>
<td>Aufsaug- und Filtermaterialien, Wischtücher und Schutzkleidung m. schädl. Verunreinigungen</td>
<td>ja</td>
</tr>
<tr>
<td>Papierfilter m. schädl. Verunreinigungen, vorwiegend organischer</td>
<td>18710</td>
<td>ja</td>
<td>150 299 D1</td>
<td>Aufsaug- und Filtermaterialien, Wischtücher und Schutzkleidung mit schädl. Verunreinigungen</td>
<td>ja</td>
</tr>
<tr>
<td>Papierfilter m. schädl. Verunreinigungen, vorwiegend anorganischer</td>
<td>18711</td>
<td>ja</td>
<td></td>
<td></td>
<td>ja</td>
</tr>
<tr>
<td>Zellstofftücher m. schädl. Verunreinigungen, vorwiegend organischer</td>
<td>18712</td>
<td>ja</td>
<td></td>
<td></td>
<td>ja</td>
</tr>
<tr>
<td>Zellstofftücher m. schädl. Verunreinigungen, vorwiegend anorganischer</td>
<td>18713</td>
<td>ja</td>
<td></td>
<td></td>
<td>ja</td>
</tr>
</tbody>
</table>

Abfälle aus Senk- und Drahterdierprozessen
Einstufung nach LAGA und EAK

ABAG
Harzprüfstand

1 Liter regeneriertes Mischbrett ohne Blasen!

Ansatzvorschrift 180 l VE Wasser 105,5 g NaCl

Leifähigkeit nach Salzzugabe: 1161 μS

Parameter für Pumpe
- Hublänge 70%
- Hubzahl 100%

<table>
<thead>
<tr>
<th>Chargenbezeichnung</th>
<th>Datum</th>
<th>Vorlagebehälter</th>
<th>Verbrauch L</th>
<th>Kapazität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Februar 1747</td>
<td>29. Okt. 1907</td>
<td>85</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

Bemerkung:

Freigabe für Produktion: Ja ☑ Nein ×

Name: [Signature]

Laboruntersuchung nur nach besonderer Anweisung

<table>
<thead>
<tr>
<th>Kapazität</th>
<th>KA in eq/l</th>
<th>AA in eq/l</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Harzprüfstand

1 Liter regeneriertes Mischbett ohne Blasen!!

Ansatzvorschrift 180 l VE Wasser 105,5 g NaCl

Leitfähigkeit nach Salzzugabe: \(\mu S \)

Parameter für Pumpe

Hublänge 70%

Hubzahl 100%

<table>
<thead>
<tr>
<th>Chargenbezeichnung</th>
<th>Datum</th>
<th>Vorlagebehälter</th>
<th>Verbrauch L</th>
<th>Kapazität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe 11 0 4 87</td>
<td>11. Nov. 1997</td>
<td></td>
<td>31</td>
<td>103 337</td>
</tr>
</tbody>
</table>

Bemerkung:

Freigabe für Produktion

Ja [X] Nein []

Name: [Signatur]

Laboruntersuchung nur nach besonderer Anweisung

<table>
<thead>
<tr>
<th>Kapazität</th>
<th>KA in eq/l</th>
<th>AA in eq/l</th>
<th>Bemerkung</th>
</tr>
</thead>
</table>

Harzprüfstand

1 Liter regeneriertes Mischbett ohne Blasen!!

Ansatzvorschrift 180 l VE Wasser 105,5 g NaCl
Leitfähigkeit nach Salzzugabe: 1164 µS

Parameter für Pumpe
Hublänge 70%
Hubzahl 100%

<table>
<thead>
<tr>
<th>Chargenbezeichnung</th>
<th>Datum</th>
<th>Vorlagebehälter</th>
<th>Verbrauch L</th>
<th>Kapazität</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW 11 06 97</td>
<td>13. Nov. 1997</td>
<td></td>
<td>504</td>
<td>100%</td>
</tr>
</tbody>
</table>

Bemerkung:

Freigabe für Produktion: Ja [X] Nein
Name:

Laboruntersuchung nur nach besonderer Anweisung

<table>
<thead>
<tr>
<th>Kapazität</th>
<th>KA in eq/l</th>
<th>AA in eq/l</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,65</td>
<td>0,56</td>
<td>la</td>
</tr>
</tbody>
</table>
Kundenerfahrungen / Befragung bei Pilotbetrieben

"Regenerierbares IA Harz" bei Drahterodiermaschinen

Kunde / Firma

Erodieranlagen seit:

Regenerierbares Harz von Fa. UT&S seit:

Bei wieviel Maschinen:

Patronenmenge:
Anzahl:
Wechsel:
Häufigkeit:
Patronen je Wechsel:

Anzahl Erodiermaschinen gesamt: Drahterodierm. (Senkerodierm.)

noch mit Einwegharz ca. %

Bearbeitetes Material:
1. Hartmetall ca. %
2. Stahl ca. %
3. Buntmetall ca. %

Sortenreinheit in % je Maschine?

Arbeitsaufwand früher ca. je Maschine
jetzt: ca. je Maschine

Anlaufs Schwierigkeiten?

Sauberkeit:

geplante Neuinvestitionen Anzahl Zeitraum?

Kostenabschätzung a) reine Kosten für Ersatzharz
b) gesamt incl. Arbeitszeit u. Stillstandszeiten

Gesamtbeurteilung: